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Abstract
To enhance users’ immersion in the mixed reality (MR) cross-scene environment, it is imperative to make geometric modi-
fications to arbitrary multi-scale virtual scenes, including adjustments to layout and size, based on the appearance of diverse
real-world spaces. Numerous studies have been conducted on the layout arrangement of pure virtual scenes; however, they
often neglect the issue of incongruity between virtual and real environments. Our objective is to mitigate the incongruity
between virtual and real scenes in MR, establish a rational layout and size for any virtual scene within an enclosed indoor
environment, and leverage tangible real objects to achieve multi-class passive haptic feedback. To achieve these goals, we
propose SMigraPH, a perceptually retained indoor scene migration method with passive haptics in MR. Firstly, we propose
a scene abstraction technique for constructing mathematical representations of both virtual and real scenes, capturing geo-
metric information and topological relationships, while providing a mapping strategy from the virtual to the real domain.
Subsequently, we develop an optimization framework called v2rSA that integrates rationality, relationship preservation, haptic
reuse, and scale fitting constraints in order to iteratively generate final layouts for virtual scenes. Finally, we render scenarios
on optical see-through MR head-mounted displays (HMDs) to enable users to engage in realistic scene exploration and inter-
action with haptic feedback. We have conducted experiments and a user study on our proposed method, which demonstrates
significant improvements in surface registration accuracy, haptic interaction efficiency, and fidelity compared to the state-of-
the-art indoor scene layout arrangement method MakeItHome as well as the random placement approach RandomIn. The
results of our approach closely resemble those achieved through manual placement using the Human method.

Keywords Mixed reality · Scene migration · Scene generation · Passive haptics · Optimization

1 Introduction

As a general use case for MR, envision an arbitrary real
and virtual indoor scene. The user is situated in a typical
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enclosed real indoor environment while exploring a non-
pre-designed virtual indoor scene. There are bound to be
disparities between virtual and real scenes in terms of size,
layout, and even style, if we directly render the unmodified
virtual scene. To overcome this intricate challenge, it is nec-
essary to manipulate the virtual indoor scene based on the
real environment before implementingMR, reaching a seam-
less fusion display effect after scene migration. The primary
objective of addressing the MR scene migration problem
is to enable users in the physical world to remotely and
interactively browse another virtual space with immersive
experiences while ensuring optimal realism in the migrated
virtual scene.

Previous scene layout arrangement methods have primar-
ily focused on placing virtual furniture in empty spaces,
with notable examples being [24, 44]. The approach pro-
posed by [24] represents the scene as a triplet with multiple
sub-elements, establishing various cost functions for each
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Fig. 1 As depicted in the first column, the real scene is set in a con-
ference room, while the virtual living room scene is displayed as a
single channel following optimization using SMigraPH. In the second
column, users can seamlessly roam within the dual-rendering environ-

ment of both virtual and real scenes, with precise geometric alignment
between the virtual table and its real counterpart. The third column
showcases the user’s perspective, providing an enhanced passive haptic
feedback experience during interactions with shelves

criterion and conducting mathematical optimization. This
method enables the generation of practical furniture layouts
in empty scenes that address both functional and visual crite-
ria. However, these results still fail to meet the requirements
ofMRscenemigration. Traditional scene layout arrangement
methods present challenges such as a mismatch or an incon-
gruity between virtual and real scenes after migration and an
inability to provide passive haptics for virtual objects. These
approaches lack a mapping strategy from virtual objects to
the real scene during scene abstraction and do not consider
passive haptic feedback constraints provided by physical
entities. To overcome these limitations, we draw inspiration
from their ideaswhile incorporating additional rules and con-
straints to ensure proper alignment between virtual and real
scenes in terms of layout. Consequently, our approach facil-
itates more realistic haptic feedback during interaction.

In this paper, we propose SMigraPH to effectively relo-
cate all objects from the virtual scene into the real scene,
enabling users in the real world to remotely explore alter-
native virtual spaces. Additionally, to enhance the realism
of virtual objects, we introduce a haptic reuse strategy that
improves object interactivity. Firstly, we extend the scene
abstraction method based on [44] for extracting geometric
approximations and relationships of objects in both virtual
and real scenes. Herein, objects are defined as a sequence
of oriented bounding boxes (OBBs) with multiple cate-
gories, and a mapping strategy from virtual to real domain
are created. Secondly, we propose an optimization frame-
work called v2rSA to iteratively generate final layouts for
virtual scenes and seamlesslymigrate them into the real envi-
ronment. v2rSA incorporates rationality, relationship, haptic
reuse, and scale fitting constraints. This approach improves
geometric surface registration between virtual objects and the
real environment while ensuring a coherent spatial arrange-
ment. Finally, through an iterative process, we obtain the final
layout of the virtual scene and employ an optical see-through

MRHMD to achieve disocclusion rendering of dual-channel
scenes.

We compared our method with RandomIn, MakeI-
tHome, and Human. The results demonstrated that: 1) our
method exhibited superior layout quality compared to Ran-
domIn andMakeItHome, approaching the level of Human;
2) both our method andHuman significantly reduced virtual
to real cross-scenes chamfer distances in comparison with
RandomIn and MakeItHome. Furthermore, we conducted
a user study to evaluate the performance of virtual-real scene
coupling. Compared to the state-of-the-art approachMakeI-
tHome, our method showed an increase in correct haptic
interactionswhile reducing task completion time and percep-
tive loss rate. Figure1 illustrates an interaction task scenario
showcasing our method’s capability for achieving realistic
roaming and haptic interaction within a dual-pass rendering
environment.

In summary,we present ourmain contributions as follows:

• We introduce the novel SMigraPH pipeline in MR,
which is the first to specifically address the perceptually
retained migration of indoor scene layouts from multi-
scale virtual scenes to flexible real scenes.

• We propose a mapping strategy with categorized passive
haptics from virtual objects to the real scene that extends
the scene abstraction method by incorporating geometric
approximations andobject relationships frombothvirtual
and real scenes.

• We establish an optimization framework called v2rSA
with a cost function that incorporates rationality, rela-
tionship, haptic reuse, and scale fitting constraints for
effectively manipulating virtual objects into the real
scene.
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2 Related work

Our approach is heavily inspired by the prior research on
indoor scene synthesis or layout arrangement, as extensively
discussed in a comprehensive survey [46] that categorizes
these approaches based on input, internal representation,
prior knowledge, and optimization techniques. Interested
readers can explore diverse strategies for virtual scene gen-
eration from this source.

2.1 Automatic indoor scene layout arrangement

It mainly focuses on placing some virtual furniture and
arranging them reasonably in empty virtual space to gen-
erate or synthesize a virtual indoor scene for users to browse.
This problem begins with [42], which uses physical systems
as restrictions to realize the rapid scene synthesis for a large
number of virtual props, where ensures objects non-intersect
and reasonable free scene space.Asdifferentmethods appear,
the prior knowledge acquisition of the problem is derived
as hard-coding, activity-driven, and example-based. [24, 44]
use the prior to mathematically optimize the designed cost
function of the layout. Later, data-driven methods appeared.
[10] used Bayesian network and Gaussian mixtures to make
a new scene from a few input examples, and [16] used undi-
rected factor graphs learned from RGB-D images to insert
objects progressively into an empty scene. Recently, some
deep learning oriented methods [20, 39, 40] have been pro-
posed to train the scene layout from the data set and find
the optimal solution for the indoor scene layout after itera-
tion. [28] take the human activity region as human-centric
into account. One of the above [24] has added user’s interac-
tion during the iterative process or explicit iteration leading
to multiple suggestions of output scenes, which makes syn-
thetic indoor scene personalized. Indoor scene arrangement
requires a stage to transform the initial input into an internal
representation. With the help of deep learning, many arti-
cles have cleverly proposed internal representation based on
graphs [40] by GCN [17] and activities [28] by human activ-
ity semantics. Some articles continue to use classic methods
like projection-based representation [39, 44], which treats
the 3D scene data as a 2D top view to facilitate neural net-
works to predict the distribution or facilitate mathematical
methods to optimize the arrangement of layout. In this arti-
cle, considering the mixed representation of the two scenes,
the subsequent optimization processes might become com-
plicated and time-consuming. We use the projection-based
representation to performmathematical optimization instead
of deep learningmethod to open the scenemigration problem
in MR, making it easier to be explained and solved.

2.2 Passive haptic and haptic retargeting

Passive haptics was first proposed in [13], using the combi-
nation of visual virtual objects and physically real objects to
enhance the haptic perception or spatial awareness in virtual
environment. Some works have designed real objects for vir-
tual props in VR to realize force feedback systems, such as
[45] providing a weight-shifting physical bar to achieve pas-
sive haptics for VR objects with different weights or sizes.
Some articles use low-fidelity native real objects to provide
haptic feedback. [2] used a single removable physical prop
to provide passive haptics. [23] extended the original phys-
ical interaction interface like HMD handle controller with
additional virtual buttons. [41] used real indoor objects to
map with geometric marks in a virtual environment, provid-
ing passive haptic to enhance the user’s awareness in VR
redirection problem. [2, 23, 41] can also be called haptic
retargeting. In AR or MR systems, the supplementary of real
assets provides users with visual guidance. If haptic informa-
tion cannot be accurately compensated, the user’s experience
is still unnatural and weird, where users might freely pass
through the rendered virtual geometry, or hit the real wall.
In recent years, many articles have applied passive haptics
systems in augmented reality, such as [14] using pin array,
and mid-air devices like [34] using ultrasounds, which can
make users feel pressure or thermal stimulation. Some pas-
sive haptics methods require additional wearable devices,
such as [31]. Some other passive haptics methods can use
the alignment of daily physical objects and virtual objects to
achieve haptic and visual correspondence, such as [19]. For
more information, please read survey [3]. In our method, the
designed cost function in the optimization stage is based on
the idea of passive haptics and haptics retargeting in MR,
regarding haptic reuse and scaling fitting as high-level con-
straints, which is inspired by [19, 41].

2.3 Related technique in our method

The scene migration in MR differs from the traditional fur-
niture layout arrangement, where objects in the real scene
need to be extracted as the input of the optimization frame-
work. In the field of computer vision and automation, there
are deep learning-based object detectionmethods, such as 3D
object detection [1, 27] in automatic driving. [27] implements
PointNets that detect 3D objects from RGB-D images, and
[1] implements end-to-end YOLO network to perform real-
time oriented bounding box detection from 3D point clouds.
Some methods focus on indoor detection like [12, 22] pro-
posed network models to realize the 3D furniture detection
under the single-shot points cloud. Their benchmarks are the
popular ScanNet V2 [6] and SUN RGB-D [47]. Some arti-
cles dealing with indoor point cloud segmentation can not be
ignored, such as [35, 37], which are oriented toward proper

123



Q. Ma et al.

Fig. 2 The pipeline of our SMigraPH scene migration method

scale levels of segmentation, such as wall, floor or object
levels. We also draw on works of point cloud registration
for indoor scenes or objects, such as [7, 33], to verify the
rationality of our scene migration method. [21] even cre-
atively sent the segmented semantic indoor scene into AR,
and some virtual digital content is placed correspondingly.
Our method uses Microsoft HoloLens 2 [38] to scan the
geometric mesh of the real indoor scene, and chose a more
straightforwardway, using the PCL [30] point cloud process-
ing library for the scanned geometric information to perform
points cloud clustering as input bounding boxes (Sect. 3.1).
After extracting the real scene data as a migration target,
we need an optimization process to obtain the optimal vir-
tual scene layout. The Metropolis–Hastings algorithm [5]
uses Markov chain Monte Carlo (MCMC) sampling method
[11] in statistics, which is the core of the simulated anneal-
ing [9] algorithm for accept-reject sampling. Similarly, some
previous works on virtual scene synthesis have extended
methods like using Reversible Jump MCMC (RJMCMC)
[36] or Locally Annealed RJMCMC (LA-RJMCMC) [43]
on classic MCMC. Their sampling and transfer strategies
are friendly when the number of virtual objects is variable or
when the scene is open.

3 Method

In this section, we present the pipeline of our scene migra-
tion approach. As illustrated in Fig. 2, it is divided into three
stages:

• Real and virtual scene abstraction. We construct
abstractions for both the real and virtual scenes by incor-
porating the input of the virtual scene and geometry

meshes obtained from scanning the real scene using MR
HMDs. These abstractions include information about the
boundaries of the real scene, OBBs of objects in both
scenes, as well as layout relationships among objects in
the virtual scene. In this process, we propose a mapping
strategy (detailed in Sect. 3.1.3) that links virtual objects
to their corresponding positions in the real scenes. Fur-
ther details regarding this process can be found in Sect.
3.1.

• Virtual scene layout optimization. In order to seam-
lessly migrate virtual scene layouts into reality, we intro-
duce an optimization framework called v2rSA (detailed
in Sect. 3.2). This framework defines a cost function com-
prising rationality, relationship, haptic reuse, and scale
fitting constraints to ensure reasonable placement of vir-
tual objects while achieving fine geometric registration
between both scenes. For more information on this topic,
please refer to Sect. 3.3.

• Real-virtual mixed rendering. Leveraging our opti-
mized virtual scene layout, we render virtual objects
within optical see-throughHMDs alongside the real envi-
ronment, offering users an immersive visual experience
that combines elements from both worlds while preserv-
ing passive haptics from reality. Dual-pass disocclusion
rendering is employed where visibility between virtual
and real objects is determined by a z-buffer algorithm
utilizing scanned geometry from the real environment
and optimized representation of the virtual scene.

As depicted in Fig. 3, the user can perceive the virtual
layout suspended on the physical geometric surface through
HMDs and freely explore within the mixed reality environ-
ment, thereby gaining an immersive understanding of the
real space. Additionally, interactive physical surfaces pro-
vide passive haptic feedback to virtual objects.
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Fig. 3 a The original real scene. b The interactive surfaces where ver-
tical haptic planes are highlighted in blue and horizontal haptic planes
are highlighted in cyan or green. c Dual-pass mixed scene rendering by
HoloLens 2 with disocclusion

3.1 Virtual and real scenes abstraction

Virtual and real scenes are abstracted in this section to facili-
tate the process of scene migration. We denote virtual scenes
as SV and real scenes as SR. A virtual scene is represented
by a tuple SV = (F, R), where F denotes the set of virtual
objects, such as indoor furniture, and R ⊆ F

2 − F ◦ F rep-
resents the relationships among these objects, such as the
proximity between a chair and a table. Similarly, a real scene
is abstracted as tuple SR = (O, B), where O refers to the
set of real objects present in the scene, and B represents
its boundaries including walls and ground. An illustration
depicting this abstracted information can be seen in Fig. 7.
An illustration depicting this abstracted information can be
seen in Sect. 4.

3.1.1 Boundaries extraction for real scene

To accurately migrate the virtual scene to reality, it is crucial
to determine the boundary of the real scene confining vir-
tual objects within appropriate indoor space. The boundary
can be classified into two categories: B = Bwall ∪ Bground ,
where Bwall and Bground denote walls and ground surfaces,
respectively. To obtain this boundary information, we uti-
lize MR HMDs to scan the real scene mesh and sample it
into a 3D point cloud representation. Both walls and ground
are then segmented as planar structures using the Random
Sample Consensus algorithm (RANSAC) [32] applied on
the acquired 3D point cloud data.

3.1.2 Bounding boxes extraction

To represent sets of virtual objects F and real objects O,
we generate an OBB for each object. Each OBB comprises
multiple parameters (illustrated in the first column of Fig. 4)
and can be expressed as follows:

OBBs :=
{
f = ( p, θ, l, δ,n f r , λsp, λgr ) , f ∈ F

o = ( p, l, δ ≡ (1, 1, 1)) , o ∈ O
(1)

Fig. 4 The left column displays the parameters contained in an OBB,
where the polar reference axis is aligned parallel to the x-axis for
measuring θ . The upper right section shows factors of the pairwise
relationship constraint in both prior and optimization iterations (from
a top view). The lower right section shows cases of good support (vio-
let), bad support (yellow), and illegal attraction (red) achieved through
hierarchical relationship constraints

where p(x, y, x) represents the centers of the bottom surface
of OBBs, θ ∈ [0, 2π) denotes the orientation indicating the
Euler angle of the object rotated relative to its initial posi-
tion along the z-axis, l(lx , ly, lz) refers to the original size,
δ(δx , δy, δz) represents the scale factor, and n f r signifies the
normal vector of the front surface. The Boolean parameter
λsp indicates whether this object can support other objects
on top of it, while λgr indicates whether this object can lay
on the ground. For example, a desk has both λsp and λgr set
to true, whereas a plate has only λsp set to true but not λgr .

Pre-modelingOBBs inF can be directly obtained from the
geometry mesh of SV. The front vector n f r and Booleans
λi,sp, λi,gr are also assigned initial values during the pre-
modeling phase. By clustering the 3D point cloud of SR, we
can acquire the OBB in O. The KD-tree [18] is utilized to
segment the point cloud into clusters based on specific thresh-
olds for Euclidean distance and minimum number of closure
points. Subsequently, an OBB is constructed using PCA [30]
for each cluster. Prior to implementing optimization, users
have the flexibility to adjust both the number of OBBs in O

through our designed MR build-in user interface as well as
fine-tune their pose and size.

3.1.3 OBBs classification andmapping strategy

As daily objects are orthogonal to the ground, users typically
interact with them in two scenarios: either by engaging with
their vertical or horizontal surfaces. In order to provide virtual
objects with a diverse haptic experience, we classify them
into three haptic types denoted as F = Fhor ∪ Fver ∪ Fno,
where these categories represent distinct classifications of
objects based on their haptic properties: horizontal haptic
objects (e.g., desks, sofas), vertical haptic objects (e.g.,
bookshelves, paintings), andnon-haptic objects (e.g., potted
plants, lamps). We manually assign the appropriate haptic
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type to each virtual object by its geometry attributes during
the scene pre-modeling process and inherit haptic type to its
OBB. In general, objects with planar interaction surfaces will
be classified as either horizontal or vertical haptic objects,
while ornamental objects or significantly inclined objects are
considered as non-haptic objects.

To approximate the semantics of real scene 3D point
clouds, we employ a straightforward yet practical approach
to classify O for facilitating subsequent mapping from F to
O. Real objects are categorized into three groups based on the
height of their OBBs’ top surface:O = Olow∪Omid∪Ohigh ,
where these categories represent low real objects (< 0.6m),
medium real objects (< 1.25m), and high real objects
(≥ 1.25m), respectively.

To align SV with SR during the optimization step, we
establish a mapping strategy from the virtual domain (classi-
fied F, to be optimized) to the real domain (classified O and
B, as attractors).

• We map Fhor to either Olow or Omid . For example, if
an object in Fhor represents a virtual chair or desk that
is interacted with horizontally, then corresponding real
objects could be a sofa for Olow or a table for Omid .

• We map Fver to Ohigh . For example, if an object in Fver

represents a virtual closet that is interactedwith vertically,
then the corresponding real object could be a bookshelf
for Ohigh .

• Additionally, objects in Fver can be mapped to Bwalls .
For instance, when the number of objects in Ohigh is
insufficient for mapping, the front surface of the virtual
cabinet in Fver can be precisely positioned on the wall
(as depicted in Fig. 5), as users typically engage in haptic
interaction with its frontal area.

• The objects in Fno can be mapped to, based on their
respective λgr , vacant areas within Bground or positioned
on the upper surface of other objects in Fλsp=true. For
instance, a small virtual potted plant (with true λgr ) lack-
ing haptic feedback may be situated in an unoccupied
space on the ground, while a microwave oven (with false
λgr ) could be placed atop the counter.

Regarding the mapping, we do not view it as an exclusive
quantitative peermapping.We do not assume that the number
of virtual haptic objects and the number of corresponding real
objects are roughly close. For example, even if the physical
scene contains no or very few high real objects that provide
haptic feedback, we can use the constraints of the wall to
map vertical tactile objects to reasonable locations. Similarly,
when the physical scene does not contain low or medium real
objects, themapping strategy of horizontal haptic objectswill
not be interrupted abnormally, and the secondary constraints
in Sect. 3.3 will ensure that they eventually appear in a rela-
tively reasonable position globally.

3.1.4 Pairwise and hierarchical relationships

In this section, we extract the topological relationship among
virtual objects in F. The relationships comprise two sub-
relations:R = Rp∪Rh , whereRp denotes pairwise relation-
ships andRh denotes hierarchical relationships. Specifically,
Rp refers to the topological structure of relative distance and
orientation between two virtual objects in F; for instance, a
chair must face a desk while maintaining proximity. On the
other hand, Rh defines scenarios where one virtual object
supports another; for instance, a laptop should be positioned
directly on the upper surface of a desk.

Wemanually set pairwise relations betweenvirtual objects
and automatically generate hierarchical relations among
them. Yu et al. [44] provide a user interface for users to
click on corresponding objects in the virtual scene to estab-
lish pairwise relations. Similarly, we write a script to store
pairs of virtual objects and record their initial relative dis-
tance and orientation. Currently, we have obtained the set
Rp = {(< fi, fj >, dp, θp) | ·} where fi, fj ∈ F, dp repre-
sents initial distance and θp denotes initial relative orientation
between fi and fj. The enumerations of < fi, fj > are not
necessarily full of the complete set of F

2 − F ◦ F. If we don
not provide the pair of the virtual object in the input script
(e.g., laptop is irrelevant to bookshelf), then there will be no
relation about them recorded in Rp. We can obtain the set
Rh automatically by principle Rh = {< f, g >| proj(f ∈
Fhor ) ∩ proj(g ∈ F) 	= ∅, f .λsp ∧ ¬g.λgr }, where opera-
tor proj(·) = projz=0(·) denotes projecting an object onto
plane with equation z = 0 from top view; also note that
proj(f) ∩ proj(g) means intersection between projections of
two different virtual objects f and g.

3.2 Virtual scene layout optimization framework

Inspiredbypreviousworks [24, 44],we employ the abstracted
data and mapping strategy discussed in Sect. 3.1 to achieve
an optimized virtual scene layout throughmathematical opti-
mization of a high-dimensional cost function. Our migration
approach enables manipulation such as relocation, rotating,
or scaling of virtual objects within the real scene, aiming to
minimize this cost through an iterative process of mapping
them to different locations. To facilitate this mapping from
the virtual domain to the real domain, we propose an opti-
mization framework called v2rSA which utilizes simulated
annealing (SA) [9] for approximating theglobal optimal solu-
tion iteratively. The cost function C(φ) is defined in detail in
Sect. 3.3. For brevity, we represent the independent variable
input of the cost function asφ = SV∪SR = {(F, R), (O, B)}.

The proposal optimization for a current virtual scene lay-
out φ, represented as a step φ → φ′, is considered in each
iteration of v2rSA. The acceptance probability for this pro-
posal step, denoted as α(φ′ | φ) [44], is determined based on
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Eq. (2):

α(φ′ | φ) = min

(
exp(

1

t
(C(φ) − C(φ′))), 1

)
(2)

where t is the temperature decreasing over iterations.
To displace, rotate, scale virtual objects, or swap their lay-

out for each proposal step φ → φ′, we employ the following
strategies:

φ → φ′
f,g∈F

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f . p → f . p + �p,
�p ∼ [N(0, σ 2

p),N(0, σ 2
p), 0]�,

0 ≤ β < 4

f . p → f . p + �p,
�p ∼ [0, 0,N(0, σ 2

p)]�,

¬f .λgr ∧ β = 4

f .θ → f .θ + �θ,
�θ ∼ N(0, σ 2

θ ),

5 ≤ β < 8

f .δ → f .δ + �δ,
�δ ∼ Tβ [N(0, σ 2

δ ), 0, 0]�,

β = 8, 9, 10
f ↔ g, β = 11

(3)

where � p, �θ and �δ represent the movements in posi-
tion, rotation, and scale of f , respectively. These variables
follow a Gaussian distribution denoted as N(μ, σ 2) =
(2πσ 2)− 1

2 e− (x−μ)2

2σ2 , whose mean is set to μ = 0 and vari-
ances σ 2

p, σ
2
θ , σ 2

δ are proportional to temperature t . In each
proposal step, both f, g are randomly selected from set F.
The type of movements is determined by operator β, which
is obtained from a uniform distribution β ∼ �U(0, 11.99)�.
Moreover, the circulant matrix T = ( ŷ, ẑ, x̂) is used
to select the components δx , δy, or δz for scaling move-
ments. The v2rSA optimization framework adjusts only the
abstract parameters in one or two dimensions (e.g., specific
dimensions of position, scalar angle, and scale) during each
proposal iteration. According to [26], the solution space is
finite on probability, ensuring convergence of the results. Fur-
thermore, the global optimization capabilities of SA assist in
avoiding local optima.

3.3 Cost function

Yu and Merrell et al. [24, 44] optimized the layout of the
virtual scene in an empty space, focusing primarily on two
constraints in the cost function: rationality and relationship.
However, to achieve passive haptic feedback during scene
migration inMR,we havemodified the traditional rationality
and relationship constraints while introducing two additional
constraints: haptic reuse and scale fitting. By weighting and
integrating all constraint cost items, we can obtain the global
cost function C(φ) with Eq. (4):

C(φ) =wnowinCw�

C = (
Cac(φ),Cp(φ),Chs(φ),Ch(φ),Cs f (φ)

)
w = (

wac, wp, whs, wh, ws f
) (4)

where the global weight wno avoids overlapping between
virtual objects or between non-corresponding virtual-real
objects, and win ensures virtual objects remain within the
boundaries of the real space. The cost item Cac(φ) serves
as a rationality constraint, with Cp(φ) and Chs(φ) serving
as relationship constraints, Ch(φ) serving as a haptic reuse
constraint, and Cs f (φ) serving as a scale fitting constraint.
In our implementation, we manually set the weight vector w
for each item to (0.05, 0.15, 0.15, 0.35, 0.3).

3.3.1 Rationality constraint

The rationality constraint ensures that the mixed scene
adheres to physical laws in order to appear plausible and
rational. Within this constraint, we consider three sub-terms:
non-overlapping, indoor restriction, and accessibility.

Non-overlapping constraint ensures that there is no inter-
section between virtual objects and that virtual objects do
not overlap with irrelevant real objects. To represent this
constraint, we introduce the global weight wno in Eq. (5).
Overlapping would result in a significantly higher cost func-
tion value during downward optimization iterations.

wno =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0,
∑

f,g∈F

body(f) ∩ body(g) = ∅,

∑
f∈Fhor

∑
o∈Ohigh

body(f) ∩ body(o) = ∅

∑
f∈Fver

∑
o∈Olow∪Omid

body(f) ∩ body(o) = ∅

INF, otherwise

(5)

where the operator body(·) represents the geometric body of
the object. INF is a manually set constant with a large value,
typically 1,000,000. When wno = 1.0, there is no overlap
between any pair of virtual objects f, g ∈ F, and irrelevant
virtual-real objects pairs also do not exhibit overlap, such as a
virtual horizontal haptic object from set Fhor and a high real
object from set Ohigh , or a virtual vertical haptic object from
set Fver and a low or medium real object from set Olow ∪
Omid .

Indoor restriction implies that virtual objects must remain
within the boundaries of the physical space. To represent
this concept, we introduce a global weight denoted as win in
Eq. (6):

win =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.0,
∑

f∈Fhor∪Fno

proj(f) ∩ proj(Bground) = ∅,

∑
f∈Fver

proj(f) ∩ proj(Bground ⊕ ε) 	= ∅

INF, otherwise

(6)

where in the condition win = 1.0, virtual objects with hori-
zontal haptic feedback Fhor or without any haptic feedback
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Fig. 5 The vertical haptic objects can receive passive haptic feedback
by interacting with high real objects or walls, while the interactive front
surface is visually emphasized in green and cyan. For instance, when the
real high objectOhigh1# is occupied by another virtual object Fver1#, a
bookshelfFver1# belonging to categoryFver can be securely attached to
the surface of wall Bwall but remains outside of Bground . Nevertheless,
this arrangement still enables seamless haptic interaction

Fno will be positioned within the physical space. As depicted
in Fig. 5, it is worth noting that the virtual object with ver-
tical haptic feedback Fver can also adhere tightly to a wall
surface, while still potentially extending beyond the ground
plane Bground due to accessibility constraints in Eq. (7). The
dilation operator ⊕ is employed to expand the projection of
the ground as proj(Bground ⊕ ε) by incorporating a small
neighborhood defined as ε.

Accessibility refers to the requirement of leaving a certain
amount of space around an object to enable people to inter-
act with it. For instance, users should be able to access a
dining table with sufficient surrounding space in order to
walk around or sit down by it. This principle holds true in the
physical world and should also be upheld in the MR scene
migration application that combines numerous virtual-real
objects. In MR, as the virtual scene is integrated into the
real environment, objects within the scene tend to become
more densely packed, thereby necessitating higher standards
for accessibility. To address this constraint, we introduce
Cac(φ) comprising five sub-terms in Eq. (7), aiming to opti-
mize object layout by maximizing looseness.

Cac(φ) = −αac

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
f,g∈F

(‖f . p − g. p‖ − L̄(f) − L̄(g))γac1

∑
f∈Fhor∪Fno

∑
b∈Bwalls

(‖f . p − b. p‖ − L̄(f))γac2

∑
f∈Fno

∑
o∈O

(‖f . p − o. p‖ − L̄(f) − L̄(o))γac3

∑
f∈Fhor

∑
o∈Ohigh

(‖f . p − o. p‖ − L̄(f) − L̄(o))γac4

∑
f∈Fver

∑
o∈Olow
∪Omid

(‖f . p − o. p‖ − L̄(f) − L̄(o))γac5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

where L̄(·) is an offset operator for determining objects’ dis-
tances based on their average side length obtained from their
bounding boxes (f ∈ F ∪ O), expressed as L̄(f) = ¯f .l ◦ f .δ.
The weight vector αac and index adjustment factors γac are
manually set for each sub-item. In our implementation, we
ensure that 5

i=1αaci ∈ αac = 1, and γaci ∈ [1.0, 1.5]. The
first termmeasures the sum of the distances between any two
virtual objects, while the second term quantifies the distance
from virtual objects without vertical haptics to walls. The

third term represents the distance from non-haptic objects to
real objects, and the fourth term denotes the distance from
horizontal haptic objects to high real objects. Lastly, the
fifth term accounts for the distance between vertical haptic
objects and low or medium real objects. However, maintain-
ing centers’ distances alone cannot guarantee accessibility;
therefore, it is necessary to consider object sizes as well. For
relatively large objects, the distance between the center points
of them should be increased slightly by L̄(·). Since Cac(φ)

represents aweaker constraint (explained in Sect. 3.3.5), L̄(·)
can provide a rough indication of an object’s size.

3.3.2 Relationship constraint

The relationship constraint refers to the requirement that vir-
tual objects exhibiting topological relations must maintain a
specific distance or orientation between each other, or pro-
vide support to one another. This constraint encompasses two
sub-constraints: pairwise distance and orientation, as well
as hierarchical support.

Pairwise distance and orientation denoted as Cp(φ), serve
as a stronger constraint to ensure the consistency of both dis-
tance and orientation between pairwise objects in Rp with
those in the original virtual scene (as shown in Fig. 4). The
constraint Cp(φ) = wpdCpd(φ) + (1 − wpd)Cpo(φ) can
be decomposed into two sub-terms: the distance constraint
Cpd(φ) defined in Eq. (8) and the orientation constraint
Cpo(φ) defined in Eq. (9). In our implementation, we manu-
ally set the weight parameter to wpd = 0.3.

Cpd (φ) =
∑

r=(<f,g>,dp,θp)∈Rp

max(| ‖g. p − f . p‖ − dp | −dε, 0)
γpd

(8)

Cpo(φ) =
∑

r=(<f,g>,dp,θp)

∈Rp

(
1 − cos(D〈n f r ,

−−−−→
f . pg. p〉 − θp)

2

)γpo

(9)

Here, γpd and γpo aremanually adjusted index factors within
the range of [1.5, 2.0].We introduce an offset dε inCpd(φ) to
ensure that the relative distancebetweenpairwise objects dur-
ing optimization falls within the range of [dp −dε, dp +dε],
where we set dε to be 0.2 (m). InCpo(φ), we define the oper-
ator D〈·, ·〉 to represent the angle between two vectors. We
model the orientation cost using a cosine function that cap-

tures the angle difference between θp and D〈n f r ,
−−−−→
f . pg. p〉,

aiming to minimize this difference and increase acceptance
probabilitywithin the relaxed range.A sharp angle difference
incurs a significant penalty.

Hierarchical support Chs(φ) promotes the cohesion of
objects with a hierarchical relationship in Rh , ensuring that
they either provide support or are supported by each other.
The centers of their contact surfaces should have minimal
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Manhattan distance (represented by 1-norm) to maintain
close proximity:

Chs(φ) =
∑

r=<f,g>∈Rh

αhs1‖f . p + f .l ◦ f .δ ◦ ẑ − g. p‖1γhs

+
∑

∃g∧¬g.λgr r̃=<o∈Omid ,g>,̃r/∈Rh

min(αhs2‖o. p

+o.l ◦ o.δ ◦ ẑ − g. p‖1)γhs (10)

αhs1 = min
r=<f,g>∈Rh

( ‖proj(g)‖A
‖proj(f) ∩ proj(g)‖A , INF

)

αhs2 = min∃g∧¬g.λgr
r̃=<o∈Omid ,g>,̃r/∈Rh

(
INF‖proj(o) ∩ proj(g)‖A

‖proj(g)‖A , 1

)

(11)

The first term is designed to prioritize the movement of
the supported object toward the upper surface of the sup-
porter in order to prevent any illegal lateral attraction toward
the side of the supporter (as shown in Fig. 4). The second
term is introduced to account for situations where an object
may be attracted by another irrelevant physical supporter in
Omid , excluding those within Rh , when a prior supporter is
occupied. To ensure a sharp increase in cost when there is
no intersection between objects’ horizontal projections, we
incorporate weight αhs1,2 (Eq.11) into our formulation. We
define A-norm ‖ · ‖A for calculating the area of projection.

3.3.3 Haptic reuse constraint

Haptic reuse constraint is a crucial aspect in the migration
of MR scenes, as it allows virtual objects to receive pas-
sive haptic feedback through physically interactive surfaces
of real objects (as shown in Fig. 3). We consider this as a
strong constraint, denoted by Ch(φ), which comprises three
sub-constraints: horizontal haptic reuse Chh(φ), vertical
haptic reuse Chv(φ), and haptic orientation Cho(φ). These
sub-constraints can be combined with appropriate weights to
obtain the overall constraint.

Ch(φ) = whhChh(φ) + whvChv(φ) + (1 − whh − whv)Cho(φ)

(12)

where the weights (whh, whv) = (0.4, 0.4) were set in
our implementation, while the index adjustment factors
γhh, γhv, γho in the following equations were manually
adjusted within the range of [3.0, 4.0].
Horizontal haptic reuse leverages real objects to optimize
the positioning of virtual objects, enabling a more realistic
haptic experience in the horizontal direction. This constraint

is represented by the cost function Chh(φ) in Eq. (13), aim-
ing to minimize the distance between the centers of virtual
objects with horizontal haptic reuse property (f ∈ Fhor ) and
their corresponding real objects (o ∈ Olow ∪ Omid ):

Chh(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ll
∑

f∈Fhor

min
o∈

Olow∪Omid

‖f . p − o. p‖γhh , m ≤ n

∑
o∈

Olow∪Omid

min
f∈Fhor

‖f . p − o. p‖γhh , m > n

(13)

where the dimension m = dim Fhor represents the cardinal-
ity of the set Fhor , while n = dim (Olow ∪ Omid) denotes
the number of objects in the combined sets Olow and Omid .
Whenm ≤ n, there are fewer virtual horizontal haptic objects
than low and medium real objects. In this case, our objective
is to find a corresponding real object o for each virtual object
f and optimize virtual objects’ positions accordingly. Con-
versely, whenm > n, our objective is to find a corresponding
virtual object f for each real object o so that the real objects
can receive a portion of the virtual objects in Fhor .

Vertical haptic reuse is governed by the cost functionChv(φ)

in Eq. (14), which slightly differs fromChh(φ). As illustrated
in Fig. 5, the mapping strategy allows vertical haptic objects
f ∈ Fver to leverage the presence of walls b ∈ Bwalls for
haptic perception. Consequently, the optimization objective
for positioning f encompasses not only o ∈ Ohigh but also
includes considerations for the wall b.

Chv(φ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
f∈Fver

min
o∈Ohigh ,

b∈Bwalls

( ‖f . p−o. p‖,
max(‖f . p−b. p‖ − L∞(f), 0)

)γhv

,

m ≤ n∑
o∈Ohigh ,

b∈Bwalls

min
f∈Fver

( ‖f . p − o. p‖,
max(‖f . p−b. p‖ − L∞(f), 0)

)γhv

,

m > n

(14)

where m = dim Fver and n = dim (Ohigh ∪ Bwalls). When
m ≤ n, the number of vertical haptic objects is fewer com-
pared to high real objects and walls, and it is expected that
each f can be mapped to the corresponding o ∈ Ohigh or
b ∈ Bwalls , optimizing the position of f . However, when
m > n, it is desired to have a corresponding f for each o or
b, allowing for optimization of their positions. To optimize
the position of f within the space of SR while leveraging b in
haptics, we introduce an offset L∞(·) to Eq. (14). The offset
operator L∞(·) can be defined as L∞(f ∈ F) = ‖f .l ◦f .δ‖∞,
aiming to quantify the length of the longest side of the vir-
tual object. This causes a slight drift in the center position
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of f instead of precise alignment with the wall b. The con-
straint Cac(φ) (Eq. 7) ensures that the drift direction of f is
toward the outer region of real scene SR. Meanwhile, the
global weight win (Eq. 6) and following haptic orientation
constraint (Eq.15) guarantee that the front face of f remains
closely attached to the wall without separation.

Haptic orientationwithChh(φ) andChv(φ) allows the virtual
object f to strategically position itself in order to leverage real
objects or walls for passive haptic feedback and accurately
represent the interaction surface. Since the orientation of f ∈
Fver is unrestricted in previous haptic reuse processes, certain
virtual vertical haptic objects like bookshelves or paintings
may face away from the scene or toward a wall. Therefore,
we introduce a constraint Cho(φ) to ensure that interactive
vertical haptic objects are oriented toward the interior of the
scene:

Cho(φ) =
∑

f∈Fver

(
1 − cos(D〈n f r ,

−−−−−−−−→
f . pBground . p〉)
2

)γho

(15)

where we utilize the cosine of the angle between n f r and

vector
−−−−−−−−→
f . pBground . p to quantify the cost (similar to Eq.9),

ensuring that the object’s front vector approximately point at
the center of the ground.

3.3.4 Scale fitting constraint

Constrained by the cost functionCs f (φ) (Eq. 16), scale fitting
aims to adjust the current size of the virtual object in order to
wrap it around its corresponding real object tightly. During
migration, when haptic mapping is utilized, the virtual and
real objects may still have different geometric wrap sizes
despite having identical positions. If we directly place the
virtual objects without adjusting their scale, virtual objects
would be pierced in the SV and SR mixed scene output,
resulting in a lack of tight fit between virtual objects and
real surfaces, thereby compromising passive haptic fidelity.

Cs f (φ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

INF, ∃o ∈ O, ∃f ∈ F, �max (f) > δτ
body(o)∩body(f)	=∅∑

o∈O, f∈F,

body(o)∩body(f)	=∅

αs f

( ‖body(o) − body(f)‖Vγs f

‖body(f) − body(o)‖Vγs f

)
,

otherwise

(16)

where the V-norm ‖ · ‖V is defined to calculate the volume
of geometric bodies resulting from Boolean operations on
objects. In the first condition ofCs f (φ), the operator�max (·)
quantifies the current deformation of an object by represent-
ing itsmost significant scale ratio (as shown inEq. (17)). If the
deformation extent exceeds a threshold value δτ , the cost will
increase to INF. It ensures that objects with significantly dif-

Fig. 6 The scale fitting of a virtual blue sofa mapped to a real black
armchair. a An armchair instance for a low real object. b Spatial mesh
representation of the armchair. c Loose fitting in terms of scale. d Tight
fitting in terms of scale. e Excessive deformation resulting from scale
fitting. f Optimal fit in terms of scale

ferent sizes cannot be mapped together through haptic reuse
using scaling techniques. For instance, optimizing a chair
into a long sofa would result in excessive stretching and is
therefore prevented. We manually set the threshold value δτ

to 30% based on references [8].

�max (f ∈ F) = max(f .δx , f .δy, f .δz, 1)

min(f .δx , f .δy, f .δz, 1)
− 100% (17)

In the second condition, when the virtual-real object pairs
exhibit similar shapes and sizes,Cs f (φ) quantifies the cumu-
lative cost of non-overlapping volumes between the virtual
and real objects in each pair, thereby reducing their size dif-
ferences. The weight parameters αs f = (αs f 1, αs f 2) were
manually assigned as (0.7, 0.3), while the trim factor was set
to γs f ∈ [2.0, 3.0]. Figure6 illustrates various instances of
scale fitting with different deformations.

3.3.5 The priority of the constraints

The weight vector w is determined empirically to stipulate
the relative importance of each sub-constraint. Readers can
fine-tune this vector according to their specific environment,
but such adjustments should be kept to a minimum. The
index adjustment factors γ are employed in the overall cost
function inside each term of the cost function to establish the
priority among sub-constraints. We present this priority as a
partial order in Eq. (18):

wno � win � Ch(φ) � Cs f (φ) � (Cp(φ),Chs(φ))

� Cac(φ) (18)
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where we use this partial order relation to guide the value
of γ : higher partial order relations correspond to larger γ

values and faster iterative convergence of sub-cost functions.
The global weight wno holds the highest priority to prevent
piercing after optimization, whilewin ensures objects remain
inside the room. This is followed by strong constraint haptic
reuse Ch , scale fitting Cs f , and weaker constraints such as
Cp, Chs , and Cac. For instance, we expect scaling fitting to
begin only after virtual object positioning has been achieved
through haptic reuse constraint. Equation18 indicates that
γh(·) should be greater than γs f for constrained optimization
in sequential order.

4 Experiment

We evaluated our approach on three virtual scenes (VS1,
VS2, VS3) named LivingRoom, Clinic, and Bakery, as well
as two real scenes (RS1, RS2) referred to as Office and Con-
ferenceRoom. We conducted six scenario combinations by
migrating three virtual scenes for each pair of real scenes.
The raw input data and scene abstraction details are presented
in Fig. 7. The parameters of the scenes are provided in Table
1, where there are differences in the number of objects and
scene size between the virtual and real scenes. The hardware
utilized in the experiment comprises the following:

• HoloLens 2, employed for scanning real (physical)
scenes, adjusting real OBBs through a programmed user
interface, and rendering the mixed scene.

• A laptop (equippedwith Intel i9 12900k processor, 32GB
RAM, and NVIDIA RTX A2000 graphics card), utilized
for executing the v2rSA optimization framework and per-
forming scene migration computations.

In Table 2, we documented the performance of ourmethod
across various scenario combinations, including the itera-
tions number and time costs during relative cooling in v2rSA
optimization, along with their corresponding initial tempera-
ture t0 as defined in Eq. (2). The optimization procedure does
not incorporate parallel acceleration.

We have compared our method with three compari-
son methods, namely RandomIn, MakeItHome [44], and
Human, regarding quality and surface registration. Ran-
domIn is a programming-based implementation where vir-
tual objects are randomly placed in the real scene without
considering constraints from other objects. MakeItHome,
as a classic scene layout method based on mathematical con-
straints, does not consider hapticsmapping strategy from real
objects in the scenemigration experiment but roughly retains
the semantic relationship between virtual objects and the lay-
out between virtual objects and the real scene boundary. The
Human method involves the manual placement of virtual

objects by designers to create a migrated scene, serving as a
benchmark for evaluating our method.

4.1 Quality

To demonstrate the quality of our method, we included the
results obtained by three other methods for comparison in
each of the six scenario combinations. Figure8 illustrates
the migration results achieved by our proposed SMigraPH
method, as well as RandomIn, MakeItHome [44], and
Human. When the scales of virtual and real scenes are
similar, such as in VS1-RS1 and VS3-RS2 scenarios, both
SMigraPH and Human exhibit a distinct advantage over
the other two methods. In contrast, RandomIn and MakeI-
tHome fail to maintain a semantic mapping from the virtual
domain to the real domain, resulting in a disordered scene
migration.

Our approach facilitates the creation of numerous remark-
able interactive haptic mappings. The virtual hospital bed in
VS2-RS2 is positionedonaphysical, spacious table, ensuring
precise alignment that allows individuals to even recline upon
it. Similarly, the virtual sofa in VS1-RS1 can be comfortably
sat upon, simulating the tactile properties of an actual sofa,
which just like the material of the real sofa has been changed
to virtual white. The virtual tableware and other physical
small objects in VS3-RS2 can coexist on the real table simul-
taneously. SMigraPH generates mixed scenes with ample
vacant space, even when there are numerous virtual objects
present, as seen in VS2-RS1 and VS3-RS1. In contrast, the
virtual dining tables are roughly distributed in the vicinity
of the others using MakeItHome in VS3-RS2. Due to the
constraints of daily physical environments, walls typically
intersect perpendicularly. Our method should also be effec-
tive in certain non-orthogonal physical spaces, such as rooms
with acute or obtuse angles in the top view. In extreme cases,
vertical haptic objects may acquire passive haptic feedback
via walls and potentially appear congested in sharp corners,
rendering them inconvenient for users to access.

Regarding congruence, MakeItHome occasionally
achieves partial surface registration by chance, as exempli-
fied in the case of the glass table in VS1-RS1. However,
due to optimization and scanning accuracy limitations, the
plane registration performance of SMigraPH is slightly infe-
rior compared to that of Human, as observed in Table 3
across most scenario combinations. Moreover, our method
does not extensively consider the mapping strategy for Fno,
resulting in less reasonable potted plants in VS1-RS1 com-
pared to Human. When migrating a large virtual scene to a
smaller real scene, the density increases, and some seman-
tic mappings become unreasonable. To address this issue,
Human may compromise on object deformations, such as
the two small sofas no longer being placed around the hos-
pital bed like in our method for VS2-RS1. Due to inertial
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Fig. 7 The columns from a–e display virtual scenes VS1, VS2, and
VS3, as well as real scenes RS1 and RS2. The raw input for each scene
is presented in the top row. The second row represents the scene abstrac-
tion data using different colors: green for Fhor or Olow , blue for Fver

or Ohigh , yellow for Fno, cyan for Omid , red for Bwalls , orange for
Bground , white denotes Rp , and gray signifies Rh . Subsequently, rows
(f, g) show scene overview (f1, g1) and panorama (f2, g2) of Office and
ConferenceRoom

Table 1 Scene abstraction parameters

Size Area (m2) Number of virtual objects Number of relationships Number of real objects

VerHa HorHb NoHc Pair Hier. Low Mid High

VS1 LivingRoom 6.8 m*8 m 54.4 2 12 14 13 8 –

VS2 Clinic 5.9 m*13 m 76.7 3 16 5 12 3

VS3 Bakery 7.4 m*11.3 m 83.6 3 21 38 22 25

RS1 Office 5.8 m*6 m 34.8 – – 10 8 3

RS2 ConferenceRoom 8.2 m*12.6 m 103.32 23 16 1

avertical haptic objects, bhorizontal haptic objects, cnon-haptic objects

Table 2 Optimization
performance and process
parameters of v2rSA

VS1-RS1 VS1-RS2 VS2-RS1 VS2-RS2 VS3-RS1 VS3-RS2

t0 500 900 600 1000 800 1200

Iteration num. 12,000 19,000 16,000 25,000 20,000 30,000

Time cost (s) 116 178 161 213 362 398
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Fig. 8 The scene layout overviewaftermigration based onour approach
(the first column) is compared with three other methods (following
columns) in this figure. The results of six scenario combinations are
presented from top to bottom rows. To demonstrate the congruence
between virtual objects and real scenes using different methods, the

virtual layout optimization results are integrated with the correspond-
ing real scene meshes. Pseudo-colors are applied to enhance the meshes
of the real scene, gradually transitioning from light to dark blue as depth
increases relative to the camera viewport
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thinking, humans tend to place the same class of objects
together to reduce mental consumption during task load, but
this will cause semantic confusion in the local area (virtual
armchair corresponds to low cabinets) and more crowded.
(Three virtual armchairs are placed side by side). Instead, our
program assigned the armchair to another physical desk and
found a virtual wheelchair to replace it. In this confined case,
Ours can be considered to have advantages over Human.
Additionally, Human may sacrifice passive haptics reuse of
certain objects (e.g., many tables in VS3-RS1) to achieve
semantically coherent scenes after migration. Please note
that although Human has spent a lot of effort and cannot
compete with Ours in terms of automation, in this work we
only use Human as a benchmark close to ground truth and
as a direction for quality optimization (like what they did in
[15]). We do not intend to surpass Human in all metrics.

4.2 Analysis of surface registration

In termsof scenes congruence betweenSV andSR, thematch-
ing condition between the geometries of two scenes after
implementing different migration methods is analyzed by
employing the chamfer distance [4] of two point clouds to
quantify the surface registration. As shown in Eq. (19), the
chamfer distance is a commonly used lossmetric in 3D recon-
struction [25]:

CD(SV,SR) ≡ 1

|SV|
∑
v∈SV

min
r∈SR

‖v − r‖ (19)

where the set SV represents the point cloud of virtual objects
in SV, while the set SR denotes the point cloud of the real
scene SR. This equation signifies the cumulative mean of the
minimum distance between all points v in SV and any given
point in SR.

Eachmethod in a different scenario combination produces
five iterative results, and we collect the calculated chamfer
distance into Table 3. For each data block of scenario combi-
nation, the first columnpresents the average chamfer distance
along with its standard deviation. The second column illus-
trates the rate of increased chamfering loss when SMigraPH
compared to the other three methods. In the third column, a
t-test is conducted assuming there is no statistical difference
between the chamfer distances calculated by the other three
methods and our SMigraPH method.

In most cases, the metrics of our method closely resem-
ble those exhibited in hand-placed scenes by Human and
exhibit a statistically significant difference compared to the
RandomIn and MakeItHome methods. This is particularly
evident in dense virtual scenes and large real scenes where
our method’s chamfering loss is significantly reduced.While
MakeItHome can provide a more reasonable layout for pure
virtual scenes in empty spaces, it overlooks the haptic reuse
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offered by real scenes, resulting in large variation compared
to the chamfer distance of SMigraPH. This is even more so
for RandomIn.

In certain cases, the utilization of RandomIn, as demon-
strated in VS1-RS2, may serendipitously result in the cou-
pling of specific virtual objects with real objects, thereby
leading to a marginal reduction in chamfer distance that
closely approximates MakeItHome. Furthermore, in the
VS3-RS1 combination, which involves mapping a large vir-
tual scene to a smaller real scene, our method achieves a
chamfer distance that is 19.8% lower than that achieved by
Human. As discussed in Sect. 4.1, this phenomenon may
arise due to the trade-off made by Human, sacrificing pas-
sive haptics reuse in order to achieve semantically coherent
scenes.

In general, our approach significantly reduces chamfer-
ing error (highlighted in bold or italics in Table 3). Figure9
illustrates point cloud chamfer distances and their Weibull
distributions for combinations VS1-RS1 andVS3-RS2 using
four different methods, with the reference points set shown in
Fig. 10. It can be observed that our method exhibits a higher
concentration of pointswithin the low loss region (depicted in
deep violet) compared to traditional control methods where
more points within high loss region (depicted in white or
red). Both our method and Human demonstrate effective
cross-scene surface registration.

Fig. 9 Achamfer distance diagramdepicting theC2Ccomparison (with
Weibull distribution [29] in each second row) from VS obtained by dif-
ferent methods to RS. The first two rows illustrate the combination of
VS1-RS1, while the subsequent two rows demonstrate the combination
of VS3-RS2. The distances of points in the VS relative to the reference,

ranging from near to far, are progressively indicated by a color gradient
of violet-white-red. The accuracy of surface registration in the corre-
sponding method of a C2C increases with a higher proportion of dark
violet parts
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Fig. 10 The references for calculatingpoint cloud to cloud (C2C) cham-
fer distance encompass the point clouds and mesh data of two distinct
indoor real scenes RS1 and RS2

5 User study

To further substantiate the validity of our proposed approach
SMigraPH, in conjunction with three other comparative
methods (RandomIn,MakeItHome, andHuman), we have
conducted a user study based on haptic interaction to acquire
both objective and subjective metrics.

5.1 Haptic interaction study design

Participants. We recruited 36 participants, comprising 20
male and 16 female users aged between 23 and 45 years
old. Among them, 9 users had no prior experience with MR
devices, while the remaining 27 users possessed varying
degrees of experience or proficiency in using MR devices.
Each participant was randomly assigned to either to a com-
bination of virtual and real scenes.

Task 1 (T1). Participants were instructed to navigate through
the entire mixed scene and interact with labeled virtual
objects, both vertical haptic (VerH) and horizontal haptic
(HorH) objects, as quickly as possible. We required partic-
ipants not to collide or pierce any virtual objects. Once an
object was interacted with by the participant, its label would
be automatically removed by the program. T1 terminated
when all labels had been removed. The purpose of T1 is to
evaluate the overall rationality and interactive efficiency of
the migrated scene by measuring the task’s completion time.

Task 2 (T2). We consecutively assigned random labels to
eight virtual objects, including vertical haptic (VerH), hor-
izontal haptic (HorH), and non-haptic objects (NoH). We
instructed participants to evaluate them based on their haptic
effects, topological relationships, and placement rationality.
Subsequently, the user was required to provide a comprehen-
sive assessment of each object’s qualities to the experimenter.
T2 terminated once all eight evaluations had been reported.
The purpose of T2 is to evaluate the local rationality, pas-
sive haptics feasibility, and subjective fidelity of themigrated
scene by recording score reports and calculating perception
loss rates.

Procedure. For both T1 and T2, each participant assigned to a
specific combination of scenes will undergo testing using the
aforementioned four methods. Once the user enters the real
scene, all four methods’ virtual environments (VE) will be
presented to participants in a randomized order for complet-
ing two tasks. A 10-minute break will be provided between
each VE, with no time interval between T1 and T2 within
each VE. All the migrated VE layout of four methods are
pre-optimized or prepared in advance. Besides, participants
are allowed to fine-tune the generated real OBBs through
the HMD user interface, following which our method will
seamlessly re-optimize in the background. Due to potential
unreasonable placement of certain virtual objects, users may
face difficulty locating them all before concluding T1; par-
ticipants have discretion to terminate T1 prematurely, and
their final time consumption on this task will be recorded as
a ratio of actual elapsed time to task completion rate. 1 In
T2, if an object labeled for assessment is not found, partic-
ipants can choose whether or not to continue with the task;
any unreported score for that object would be considered as
a complete loss (as shown in Table 4).

Metrics and statistical analysis. The performance of T1 is
evaluatedbasedon theobjectivemetric of timeconsumption
measured in seconds. As participants are required to interact
efficientlywith themixed scene, a decline in the effectiveness
of haptic feedback, environmental conditions, or scene den-
sity for the corresponding scene migration method generally
leads to an increase in time consumption. The performance
of T2 is evaluated based on the subjective metric of fidelity
loss rate. Within the specific scenes combination, the calcu-
lation of loss rate for each method is derived from the user’s
comprehensive assessment score report. The assigned integer
scores for objects in this metric range from 0 to 3, represent-
ing no loss, slight loss, moderate loss, and complete loss,
respectively. The loss rate is determined as a weighted aver-
age of all reported scores relative to complete loss. A higher
loss rate indicates poorer subjective perceptions toward vir-
tual objects by users. Two metrics for four methods across
six scenes combinations are presented in Fig. 11 and Table
4. For each metric, we compared the values obtained from
our method with those from RandomIn,MakeItHome, and
Human. The sample population was derived from the same
batch of participants. In T1, a total sample size of 36was con-
sidered for time consumption (TC). In T2, the fidelity loss
rate (LR) was calculated based on score reports of 288 origi-
nal samples (8 per person), resulting in 12 LR samples across
6 scenes combinations. Therefore, it is reasonable to assume
that these data follow a normal distribution. We conducted

1 For instance, if a participant spends 120s interacting with 20 out
of 24 objects, then their final time consumption would amount to
120/(20/24) = 144(s).
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Fig. 11 The objective time consumption of T1

a t-test to examine statistical differences, and the resulting
p-values are presented in Table 5.

5.2 Results and discussion

Objective time consumption. As depicted in Fig. 11, our
method demonstrates less time consumption compared to
the RandomIn and MakeItHome approaches across most
scenario combinations and even exhibits similar interaction
efficiency to that of Human in certain scenario combina-
tions. Moreover, as shown in Table 5, the task completion
time of our method significantly differs from that of Ran-
domIn and MakeItHome, but closely approximates that of
Human. In a large real scene such as the RS2, Conference-
Room, where user motion trajectories increase, task time
consumption tends to elongate.When the virtual scene’s load
is increased such as in the VS3, the time consumption dis-
parity between our method and traditional methods becomes
more pronounced, since the cases where the virtual layouts
are completely lost are greatly reduced due to our constraints
of haptic reuse and scale fitting.

Subjective fidelity loss. After collecting reports of percep-
tion fidelity loss for both haptic and non-haptic objects, we
calculated the loss rates by weighted percentage, resulting
in the last column of Table 4. Subjective reports of non-
haptic objects tend to be less costly as they do not require real
objects for placement, while restrictions on haptic objects are
more stringent. Overall, ourmethod yielded fewer perceptive
losses with less than 25% (in bold) appearing in several sce-
nario combinations across all object categories. TheHuman
method resulted in smaller losses with most achieving a rate
of less than 25% (< 25% in single haptic or non-haptic
objects category are marked as bold italics).RandomIn per-
formed poorly with reported loss rates exceeding 75% under
all combinations (in italics). The traditional MakeItHome
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Table 5 Statistical analysis of TC and LR

Method TC Avg ± std. dev. (TCSM − TCi ) / TCi p Samp. size LR Avg ± std. dev. (LRSM − LRi ) / LRi p Samp. size

SMi 318.09 ± 87.64 36 0.206 ± 0.083 288 → 12

Ran 641.05 ± 199.14 −50.4% < 0.001∗ 0.828 ± 0.081 −75.1% < 0.001∗

Mak 469.24 ± 153 −32.2% < 0.001∗ 0.543 ± 0.144 −62.1% < 0.001∗

Hum 299.24 ± 75.01 6.3% 0.16 0.179 ± 0.095 14.9% 0.07

Bold percentage: reduces by more than 25%; Bold italics p: there is a significant difference

(a) SMigraPH

User’s path
Sit

Place
Touch

Failed interaction

(b) RandomIn

(c) MakeItHome (d) Human

Fig. 12 Aparticipant’s spatial trajectories under fourmethods inmigra-
tion VS1-RS1. The low, medium, and high real objects are represented
by green, cyan, and violet squares respectively

method does not utilize haptic reuse resulting in suboptimal
loss rates. As shown in Table 5, compared toRandomIn and
MakeItHome, our method reduced loss rates by over half
with significant differences while showing minor increases
compared to Human.

Spatial trajectories. The spatial trajectories presented in
Fig. 12 illustrate amedian participant’smovements duringT1
under four different methods (in scene migration from Liv-
ingRoom to Office), with various interaction points marked
(the participant was asked to report the interaction type with
each virtual object during this process). The virtual scene lay-
out results obtained by our method and Human align more
closely with real scene layouts, resulting in more regular
participant trajectories. Conversely, the other two methods
occupy excessive free space within the physical room due to
haptics loss, resulting in more chaotic participant trajectories
and an increased number of failed interactions.

Algorithm convergence and weight vector. With appropriate
weight vector settings and the theoretical underpinning of
the optimization framework described in Sect. 3.2, we can
achieve convergence of the virtual scene to an approximate
global optimal solution within a finite time and a limited
number of iterative steps. The total iteration number is gen-
erally directly proportional to the complexity of the scene, as
illustrated in Table 2. As described in Sect. 3.3.5, the assign-
ment of the weight vector w for the cost function should fall
within a reasonable range, in accordance with the empiri-
cal findings. For instance, altering the values of (wp, wh)

from (0.15, 0.35) to (0.35, 0.15) may result in the deliberate
hovering and clustering of certain virtual objects, rather than
seeking out other physical entities for object registration. In
each constraint, whenwe conduct amapping on a small scene
like RS1, we found that ifWno andWin are not guaranteed to
be in the leading position of the partial order relation, many
objects will be tightly attracted or just be intersected, and
directly be crowded out by Cac (the last constraint in partial
order) locating on the outside of the wall. For another exam-
ple, if we set γs f in Sect. 3.3.4 to 1.0, which is smaller than
γpd , some objects will no longer consider deformation, but
directly adsorbed on some imperfect objects, such as a vir-
tual small table to a physical small sofa, rather than a physical
large table.

Limitations. There are certain limitations inherent in our
method. Due to the adoption of approximate classifica-
tion during the scene abstraction process, disregarding the
original precise semantics of real objects, haptic seman-
tic mismatches may arise in some migration examples. For
examples, a user might be mistakenly sitting on a coffee
table; or a high stool being misinterpreted as a passive haptic
provider for virtual bookshelves. Furthermore, it is impor-
tant to note that our v2rSA framework relies on SA typical
imprecise optimization and does not consider proposal steps
along the z-axis that much during the iterative transfer pro-
cess. Consequently, when ordinary virtual scenes migrate to
real scenes with varying heights, the virtual objects such as
chandeliers, range hoods, curtains, and murals may appear
misplaced. In addition, certain inclined or irregular objects
possessing large beveled surfaces may exhibit inadequate
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passive haptic feedback, including vases, lamps, and potted
plants, for instance.

6 Conclusion

We propose SMigraPH, a passive haptics-enabled method
for migrating indoor virtual scenes to real scenes. Through
experiments and user studies, our approach demonstrates
superior capability in aligning the migrated virtual scene
with the real scene surface, resulting in enhanced efficiency,
accuracy, and subjective fidelity during haptic interactions.
Notably, our method pioneers the consideration of the map-
ping strategy between the virtual and real scenes, offering
insights and potential advancements for future MR scene
migration applications.

There are certain limitations inherent in our method. Due
to the adoption of approximate classification during the scene
abstraction process, disregarding the original precise seman-
tics of real objects, haptic semantic mismatches may arise
in some migration examples. For examples, a user might be
mistakenly sitting on a coffee table; or a high stool being
misinterpreted as a passive haptic provider for virtual book-
shelves. Furthermore, it is important to note that our v2rSA
framework relies on SA typical imprecise optimization and
does not consider proposal steps along the z-axis that much
during the iterative transfer process. Consequently, when
ordinary virtual scenes migrate to real scenes with varying
heights, the virtual objects such as chandeliers, range hoods,
curtains, and murals, may appear misplaced.

The limitationsmentioned in Sect. 5.2 can be addressed by
acquiring additional real scene datasets with semantic infor-
mation and establishing amore intricate virtual-real mapping
relationship, which could serve as a potential avenue for
future research. Additionally, future works could address
irregular room configurations, to ensure that virtual scenes
can be better mapped to more complex real scenes, such
as non-orthogonal spaces or curved spaces with non-planar
walls. For the mapping of inclined objects, more sophis-
ticated abstract modeling methods could be introduced to
deal with entities with large beveled planes. Furthermore, the
field of scene migration has also given rise to various open
research challenges, including scene texture migration and
cross-scene lighting layout, which hold promise as valuable
areas for future breakthroughs.
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